COPPER TUBE CRIMPING LUGSTYPE AM
 for copper conductors

Description:

- A-M series lugs are manufactured from electrolytic copper tube Cu-OF CW008A conform to UNI EN I3600:2003. The dimensions of the tube are designed to obtain the most efficient electrical conductivity and mechanical strength to resist vibration and pull out.
- Cembre lugs are annealed to guarantee optimum ductility which is an absolute necessity for connectors which will have to withstand the severe deformation arising when compressed and any bending of the palm during installation.
- In applications subject to vibration, terminals still have to perform a reliable connection, annealing plays a vital role in avoiding cracking or breaks between the barrel and palm.
- The presence of an inspection hole facilitates full insertion of the conductor, whilst the barrel length has been designed to allow easy and accurate positioning of the dies during the crimping operation.
- Lugs are electrolytically tin plated with a minimum thickness of $3 \mu \mathrm{~m}$ to avoid oxidation. A-M series lugs form an important part of Cembre crimping systems for power carrying conductors.

Each connector is marked as follows:

- Cembre trade mark and reference number.
- Nature and size of conductor (mm^{2}).
- \varnothing stud (mm).

Markings:

Cembre

$\begin{aligned} & \text { Cond. Size } \\ & \text { sqmm } \\ & \text { low } \begin{array}{c} \text { lranded fiexible * } \end{array} \end{aligned}$	$\begin{gathered} \text { Ø } \\ \text { Stud } \\ \mathrm{mm} \end{gathered}$	Ref.	Dimensions mm					
			®i	B	M	N	L	d
0,25 $\div 1,5$	3	A 03-M 3 *	1,8	6,0	4,5	3,5	16,0	3,2
	3,5	A 03-M 3.5*	1,8	6,5	4,5	3,5	16,0	3,7
	4	A 03-M $4 *$	1,8	6,5	5,0	4,0	17,0	4,3
	5	A 03-M 5^{*}	1,8	7,5	5,5	4,5	18,0	5,3
	6	A 03-M 6*	1,8	9,0	6,0	5,0	19,0	6,4
1,5*2,5	3	A 06-M 3 *	2,4	6,0	4,5	3,5	17,0	3,2
	3,5	A 06-M 3.5*	2,4	6,5	4,5	3,5	17,0	3,7
	4	A 06-M 4^{*}	2,4	7,5	5,0	4,0	18,0	4,3
	5	A 06-M 5^{*}	2,4	8,5	5,5	4,5	19,0	5,3
	6	A 06-M 6*	2,4	9,0	6,0	5,0	20,0	6,4
	8	A 06-M ${ }^{*}$	2,4	12,0	9,0	8,0	26,0	8,4
4:6	3	A 1-M 3	3,6	7,5	4,5	3,5	20,5	3,2
	3,5	A 1-M 3.5	3,6	7,5	4,5	3,5	20, 5	3,7
	4	A 1-M 4	3,6	8,0	5,0	4,0	21,5	4,3
	5	A 1-M 5	3,6	9,0	6,5	6,0	25,0	5,3
	6	A 1-M 6	3,6	11,0	7,0	6,0	25,5	6,4
	8	A 1-M 8	3,6	14,0	9,0	8,0	29,5	8,4
	10	A 1-M 10	3,6	16,5	11,0	10,0	33,5	10,5
10	4	A 2-M 4	4,6	10,0	5,0	4,0	22,5	4,3
	5	A 2-M 5	4,6	10,0	6,5	6,0	26,0	5,3
	6	A 2-M 6	4,6	11,0	7,0	6,0	26,5	6,4
	8	A 2-M 8	4,6	15,0	9,0	8,0	30,5	8,4
	10	A 2-M 10	4,6	18,0	11,0	10,0	34,5	10,5
	12	A 2-M 12	4,6	19,0	14,0	12,0	39,5	13,2
16	4	A 3-M 4	5,8	11,5	5,0	4,0	25,5	4,3
	5	A 3-M 5	5,8	11,5	6,5	6,0	29,0	5,3
	6	A 3-M 6	5,8	11,5	7,0	6,0	29,5	6,4
	8	A 3-M 8	5,8	15,0	9,0	8,0	33,5	8,4
	10	A 3-M 10	5,8	18,0	11,0	10,0	37,5	10,5
	12	A 3-M 12	5,8	20,0	14,0	12,0	42,5	13,2
25	4	A 5-M 4	7,0	14,0	5,0	4,0	28,0	4,3
	5	A 5-M 5	7,0	14,0	6,5	6,0	31,5	5,3
	6	A 5-M 6	7,0	14,0	7,0	6,0	32,0	6,4
	8	A 5-M 8	7,0	15,0	9,0	8,0	36,0	8,4
	10	A 5-M 10	7,0	18,0	11,0	10,0	40,0	10,5
	12	A 5-M 12	7,0	21,0	14,0	12,0	45,0	13,2
35	5	A 7-M 5	8,9	17,0	6,5	6,0	34,0	5,3
	6	A 7-M 6	8,9	17,0	7,0	6,0	34,5	6,4
	8	A 7-M 8	8,9	17,0	9,0	8,0	38,5	8,4
	10	A 7-M 10	8,9	19,0	11,0	10,0	42,5	10,5
	12	A 7-M 12	8,9	21,0	14,0	12,0	47,5	13,2
$50 \quad 50$	6	A 10-M 6	10,0	19,0	8,0	7,0	38,5	6,4
	8	A 10-M 8	10,0	19,0	9,0	8,0	40,5	8,4
	10	A 10-M 10	10,0	20,0	11,5	9,5	44,5	10,5
	12	A 10-M 12	10,0	21,0	12,0	12,0	47,5	13,2
	14	A 10-M 14	10,0	25,0	16,0	14,0	55,5	15,0
	16	A 10-M 16	10,0	26,0	18,0	16,0	59,5	17,0
$70 \quad 50$	6	A 14-M 6	11,3	21,0	8,0	7,0	44,0	6,4
	8	A 14-M 8	11,3	21,0	9,0	8,0	46,0	8,4
	10	A 14-M 10	11,3	21,0	11,0	10,0	50,0	10,5
	12	A 14-M 12	11,3	22,0	14,0	12,0	55,0	13,2
	14	A 14-M 14	11,3	25,0	16,0	14,0	59,0	15,0
	16	A 14-M 16	11,3	26,0	18,0	16,0	63,0	17,0

Cond sqm	Size mm	$\stackrel{\emptyset}{\text { Stud }}$	Ref	Dimensions mm					
${ }^{\text {stranded }}$	fexible	mm		Øi	B	M	N	L	d
95	$\begin{aligned} & 70 \\ & 95 \end{aligned}$	6	A 19-M 6	13,5	25,0	8,0	7,0	50,5	6,4
		8	A 19-M 8	13,5	25,0	9,0	8,0	52,5	8,4
		10	A 19-M 10	13,5	25,0	11,0	10,0	56,5	10,5
		12	A 19-M 12	13,5	25,0	14,0	12,0	61,5	13,2
		14	A 19-M 14	13,5	25,0	16,0	14,0	65,5	15,0
		16	A 19-M 16	13,5	27,0	18,0	16,0	69,5	17,0
		20	A 19-M 20	13,5	29,5	22,0	20,0	77,5	21,0
120	$\begin{aligned} & 95 \\ & 120 \end{aligned}$	8	A 24-M 8	15,2	28,5	9,0	8,0	54,0	8,4
		10	A 24-M 10	15,2	28,5	11,0	10,0	58,0	10,5
		12	A 24-M 12	15,2	28,5	14,0	12,0	63,0	13,2
		14	A 24-M 14	15,2	28,5	16,0	14,0	67,0	15,0
		16	A 24-M 16	15,2	28,5	18,0	16,0	71,0	17,0
		20	A 24-M 20	15,2	30,0	22,0	20,0	79,0	21,0
150	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	8	A 30-M 8	16,7	31,5	13,0	11,0	69,0	8,4
		10	A 30-M 10	16,7	31,5	13,0	11,0	69,0	10,5
		12	A 30-M 12	16,7	31,5	16,0	14,0	75,0	13,2
		14	A 30-M 14	16,7	31,5	18,0	16,0	79,0	15,0
		16	A 30-M 16	16,7	31,5	19,0	17,0	81,0	17,0
		20	A 30-M 20	16,7	31,5	22,0	20,0	87,0	21,0
185	$\begin{aligned} & 150 \\ & 185 \end{aligned}$	8	A 37-M 8	19,2	35,5	13,0	11,0	76,0	8,4
		10	A 37-M 10	19,2	35,5	13,0	11,0	76,0	10,5
		12	A 37-M 12	19,2	35,5	16,0	14,0	82,0	13,2
		14	A 37-M 14	19,2	35,5	18,0	16,0	86,0	15,0
		16	A 37-M 16	19,2	35,5	19,0	17,0	88,0	17,0
		20	A 37-M 20	19,2	35,5	22,0	20,0	94,0	21,0
240	$\begin{aligned} & 185 \\ & 240 \end{aligned}$	8	A 48-M 8	21,1	39,0	13,0	11,0	77,5	8,4
		10	A 48-M 10	21,1	39,0	13,0	11,0	77,5	10,5
		12	A 48-M 12	21,1	39,0	14,0	12,0	79,5	13,2
		14	A 48-M 14	21,1	39,0	18,0	16,0	92,0	15,0
		16	A 48-M 16	21,1	39,0	19,0	17,0	94,0	17,0
		20	A 48-M 20	21,1	39,0	22,0	20,0	100,0	21,0
300	$\begin{aligned} & 240 \\ & 300 \end{aligned}$	10	A 60-M 10	23,7	44,0	20,0	11,0	96,0	10,5
		12	A 60-M 12	23,7	44,0	20,0	14,0	99,0	13,2
		14	A 60-M 14	23,7	44,0	22,0	16,0	103,0	15,0
		16	A 60-M 16	23,7	44,0	22,0	19,0	106,0	17,0
		20	A 60-M 20	23,7	44,0	24,0	23,0	112,0	21,0
400	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	12	A 80-M 12	27,0	51,0	22,0	19,0	113,0	13,2
		14	A 80-M 14	27,0	51,0	22,0	19,0	113,0	15,0
		16	A 80-M 16	27,0	51,0	22,0	19,0	113,0	17,0
		20	A 80-M 20	27,0	51,0	24,0	23,0	119,0	21,0
500	400	16	A 100-M 16	30,3	56,5	22,0	19,0	117,0	17,0
	500	20	A 100-M 20	30,3	56,5	24,0	23,0	123,0	21,0
630	500	16	A 120-M 16*	33,4	61,6	22,0	19,0	128,0	17,0
	630	20	A 120-M 20*	33,4	61,6	24,0	23,0	134,0	21,0
800	630	16	A 160-M 16*	38,0	72,0	24,0	19,0	141,0	17,0
		20	A 160-M $20{ }^{*}$	38,0	72,0	24,0	23,0	145,0	21,0
1000	800	16	A 200-M 16*	44,0	80,0	24,0	19,0	158,0	17,0
		20	A 200-M 20*	44,0	80,0	24,0	23,0	162,0	21,0

*Actual conductor section may require a larger lug eg for
$120 \mathrm{~mm}^{2}$ size use A30-... lug.

- Not UL approved

